Home | Contact | Sitemap | Directory | CAS | 中文
About Us Science & Technology Scientist International Cooperation News Education & Training Join Us Societies & Journals Papers Resources Links
Location: Home>News>Events
  • Events
  • Int’l Cooperation News
  • Upcoming Events
  • Bending rigidity and Gaussian bending stiffness of single-layered graphene
    Author:Yujie Wei   | Date:2012-12-17   | Click Rate:    | 【Close

    Recently, Prof. Yujie Wei and his research team at the State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences published their work on Nano Letters.

    Bending rigidity and Gaussian bending stiffness are the two key parameters that governs the rippling of suspended graphene  –  an unavoidable phenomenon of two-dimensional materials when subject to a thermal or mechanical field. A reliable determination about these two parameters is of significance for both the design and the manipulation of graphene morphology for engineering applications. By combining the density functional theory calculations of energies of fullerenes and single wall carbon nanotubes with the configurational energy of membranes determined by Helfrich Hamiltonian, the researcher have designed a theoretical approach to accurately determine the bending rigidity and Gaussian bending stiffness of single-layered graphene (Fig. 1). The bending rigidity and Gaussian bending stiffness of single-layered graphene are 1.44eV (2.31 ´10-19Nm) and -1.52eV (2.43 ´10-19Nm), respectively. The bending rigidity is close to the experimental result. Interestingly, the bending stiffness of graphene, is close to that of lipid bilayers of cells about 1~2eV, which might mechanically justify biological applications of graphene.








    Figure 1. Illustration for the determination of the two elastic parameters controlling the corrugation of graphene.

      Copyright © 1980–2009 Institute of mechanics, Chinese academy of sciences
    Address:No.15 Beisihuanxi Road, Beijing, China(100190)
    Tel:(86 10)62560914 Fax:(86 10)62561284