Headlines

View More

The Overstretch Strategy-A New Strategy to Double Stretchability of Stretchable Electronics

Stretchableelectronicshavebeenextensivelydevelopedinthelastdecadefordiverseapplicationsrangingfromhealthmonitoring,medicaltreatment,andintelligentindustriestoaerospaceequipmentwithstretchableorcurvilinearcharacteristics.Thekeytechnologicalinnovationininorganicstretchableelectronicsistheachievementofelasticstretchabilitythroughthedesignedmechanicalstructures,enablingconformalwrappingonarbitrarilycomplicatedtargetsurfaces,maintainingtheelectronicfunctionsunchanged.Forinstance,the“island-bridge”meshstructure,inwhichthefunctionalcomponentsresideatthe“islands”andtheinterconnectsformthe“bridges,”isthemostpopularone.The“islands”undergonegligibledeformationduringthestretchofthestructure,andthe“bridges”providebothelasticstretchabilityandelectronicconductivity.Strategiesforachievingelasticstretchabilityofstretchableelectronicsarecriticallyessentialandhaveattractedsignificantresearchattention.Althoughseveralpreviousstudieshavefocusedonthedesignofstretchablestructures,asshowninFigure1,onlytwofundamentalstrategieshavebeenexploitedtoachieveorenhanceelasticstretchability.Thesestrategiesaredescribedasfollows.1)Byusingtheprestrainedelasticsubstrate;awavedribbonisatypicalexample.Apre-strainisappliedtotheelasticsubstratebeforethestraightplanarribbonistransfer-printedandbonded.Thereleaseoftheprestrainyieldscompressionandout-of-planebucklingofthetransfer-printedribbon,formingawavedshapewithstretchablecharacteristics.Besides,morecomplexstretchable3Dmeso-structuresarefabricatedby2Dprecursorsbondedtoprestrainedelasticsubstrates.2)Bydesigninggeometriclayouts;versatilestretchablestructurelayoutsinvolvingcurvedinterconnectshavebeendesigned;theseincludehorseshoe,serpentine,fractal,non-buckling,helicalstructures,andkirigami-inspiredstructureswhichexhibitdifferentfeaturesintermsofelasticstretchabilityandapplicationscenarios.Sometimes,thetwotypesofstrategiesarecombinedtoenhancethestretchabilityofmechanicalstructures.Forinstance,aprestrainedelasticsubstratesignificantlyincreasesthestretchabilityofserpentinestructures.Recently,YewangSu'steamattheInstituteofMechanics,ChineseAcademyofSciences,innovativelyproposedathirdstrategytoimprovetheelasticstretchabilityofstretchableelectronics,i.e.,anoverstretchstrategy(Figure2).Thisstudyproposesoverstretchingbeyondthedesignedelasticrangeofstretchablestructures,appliedaftertransferprintingandbondingtothesoftsubstrate.Theoverstretchstrategycandoublethedesignedelasticstretchability,whichiscriticalfortheperformanceofstretchableelectronics.Thetheoretical,numerical,andexperimentalresultscollectivelyprovethattheoverstretchstrategyisvalidforvariousgeometricalinterconnectswithboththickandthincross-sections(Figure3,4,5).Theunderlyingmechanismisrevealedowingtotheevolutionoftheelastoplasticconstitutiverelationofthecriticalpartofthestretchablestructuresduringoverstretching.Theoverstretchstrategycanbeeasilyexecutedandcombinedwiththeothertwostrategiestoenhanceelasticstretchability,whichhasprofoundimplicationsforthedesign,fabrication,andapplicationsofstretchableelectronics.Theresearchresultsarepublishedintheacademicjournal“AdvancedMaterials”underthetitleof“AnOverstretchStrategytoDoubletheDesignedElasticStretchabilityofStretchableElectronics”(DOI:10.1002/adma.202300340).ThefirstauthorofthepaperisJuyaoLi,aPhDstudentattheInstituteofMechanics,ChineseAcademyofSciences,andthecorrespondingauthorisYewangSu,aresearcherattheInstituteofMechanics,ChineseAcademyofSciences,withtheparticipationofXiaoleiWu,aresearcherattheInstituteofMechanics,ChineseAcademyofSciences,inthework.ThisworkissupportedbytheNationalNaturalScienceFoundationofChina,the0to1OriginalInnovationProgramoftheChineseAcademyofSciences,CASInterdisciplinaryInnovationTeam,andtheWRQBTalentProgramoftheChineseMinistryofOrganization.  Figure1.Evolutionofstretchablestructuresoverthepastdecades. Figure2.Operationoftheoverstretchstrategy.Thecolumnontheleft(Column1)showsthestep-by-stepoperationoftheoverstretchstrategy:①-②stretchingtothedesignedelasticlimit(58.5%),②-③stretchingbeyondthedesignedelasticlimit(140%),③-④releasingtheappliedstrain,④-⑤stretchingtoenhancedelasticlimit(117%).Columns2and3providethecontoursofthefiniteelementanalysis(FEA)forthemaximumprincipalstrainandequivalentplasticstrainoftheMTSIcorrespondingtoeachstepinColumn1,respectively. Figure3.MechanicalanalysisoftheoverstretchstrategyviathefreestandingMTSI.aMechanicalconstitutiverelationshipoftheMTSI:idealelastoplasticity.bSchematicandmechanicalmodelofthefreestandingMTSI.cFirstrow:step-by-stepoverstretchstrategyoperationwithfreestandingMTSI(oneperiod).Secondrow:stressdistributioninthecross-sectionofthesemicirclevertexineachprocessifnoadditionalplasticityoccursfromregime③to④.Thirdrow:stressdistributioninthesemicirclevertexcross-sectionineachprocessifadditionalplasticityoccursfromregime③to④.dEnhancedelasticstretchabilityofthefreestandingMTSIasafunctionofthemaximumofthefirstappliedstrain/over-strain,includingtheresultsoftheexperiments,FEA,andtheory. Figure4.ExperimentalverificationoftheoverstretchstrategyviathefreestandingMTSI.aImagesoftheinitialstateofthefreestandingMTSIandthefrontandsideviewswhenstretchedby150%(fromtoptobottom).bStress–straincurvesofadog-bone-shapedcopperplateinuniaxialtension.c-kCurvesoftheforceversustheappliedstrainduringthefirstappliedstretch,unloading,andsecondappliedstretch;thefirstappliedstrainforc–kis30%,50%,60%,75%,90%,110%,120%,130%,and150%,respectively(i-kcontaintheFEAresults,dottedlines). Figure5.MechanicalanalysisoftheMTSIbondedonthesoftsubstrate.a/b/cEnhancedelasticstretchabilityofthickhorseshoe/zigzag/fractalinterconnectsbondedonthesoftsubstrateasafunctionofthemaximumofthefirstappliedstrain/over-strain.dCurveofthedesignedelasticstretchabilityofserpentineinterconnectionbondedonthesoftsubstrateasafunctionofitsthickness.e-gFEAresultsofserpentineinterconnectionswiththreetypicalthicknesses.Theuppersubgraphsarethecorrespondingwrinkling,buckling,andnon-bucklingdeformationduringstretching,andthelowersubgraphsshowtherelationshipbetweentheenhancedelasticstretchabilityofthestructureandthemaximumofthefirstappliedstrain/over-strain.hSchematicofthedeformationmodesofthepartialsemicircleforthethickandthininterconnects.   Originallink:AnOverstretchStrategytoDoubletheDesignedElasticStretchabilityofStretchableElectronics(wiley.com)

The Overstretch Strategy-A New Strategy to Double Stretchability of Stretchable Electronics

Stretchableelectronicshavebeenextensivelydevelopedinthelastdecadefordiverseapplicationsrangingfromhealthmonitoring,medicaltreatment,andintelligentindustriestoaerospaceequipmentwithstretchableorcurvilinearcharacteristics.Thekeytechnologicalinnovationininorganicstretchableelectronicsistheachievementofelasticstretchabilitythroughthedesignedmechanicalstructures,enablingconformalwrappingonarbitrarilycomplicatedtargetsurfaces,maintainingtheelectronicfunctionsunchanged.Forinstance,the“island-bridge”meshstructure,inwhichthefunctionalcomponentsresideatthe“islands”andtheinterconnectsformthe“bridges,”isthemostpopularone.The“islands”undergonegligibledeformationduringthestretchofthestructure,andthe“bridges”providebothelasticstretchabilityandelectronicconductivity.Strategiesforachievingelasticstretchabilityofstretchableelectronicsarecriticallyessentialandhaveattractedsignificantresearchattention.Althoughseveralpreviousstudieshavefocusedonthedesignofstretchablestructures,asshowninFigure1,onlytwofundamentalstrategieshavebeenexploitedtoachieveorenhanceelasticstretchability.Thesestrategiesaredescribedasfollows.1)Byusingtheprestrainedelasticsubstrate;awavedribbonisatypicalexample.Apre-strainisappliedtotheelasticsubstratebeforethestraightplanarribbonistransfer-printedandbonded.Thereleaseoftheprestrainyieldscompressionandout-of-planebucklingofthetransfer-printedribbon,formingawavedshapewithstretchablecharacteristics.Besides,morecomplexstretchable3Dmeso-structuresarefabricatedby2Dprecursorsbondedtoprestrainedelasticsubstrates.2)Bydesigninggeometriclayouts;versatilestretchablestructurelayoutsinvolvingcurvedinterconnectshavebeendesigned;theseincludehorseshoe,serpentine,fractal,non-buckling,helicalstructures,andkirigami-inspiredstructureswhichexhibitdifferentfeaturesintermsofelasticstretchabilityandapplicationscenarios.Sometimes,thetwotypesofstrategiesarecombinedtoenhancethestretchabilityofmechanicalstructures.Forinstance,aprestrainedelasticsubstratesignificantlyincreasesthestretchabilityofserpentinestructures.Recently,YewangSu'steamattheInstituteofMechanics,ChineseAcademyofSciences,innovativelyproposedathirdstrategytoimprovetheelasticstretchabilityofstretchableelectronics,i.e.,anoverstretchstrategy(Figure2).Thisstudyproposesoverstretchingbeyondthedesignedelasticrangeofstretchablestructures,appliedaftertransferprintingandbondingtothesoftsubstrate.Theoverstretchstrategycandoublethedesignedelasticstretchability,whichiscriticalfortheperformanceofstretchableelectronics.Thetheoretical,numerical,andexperimentalresultscollectivelyprovethattheoverstretchstrategyisvalidforvariousgeometricalinterconnectswithboththickandthincross-sections(Figure3,4,5).Theunderlyingmechanismisrevealedowingtotheevolutionoftheelastoplasticconstitutiverelationofthecriticalpartofthestretchablestructuresduringoverstretching.Theoverstretchstrategycanbeeasilyexecutedandcombinedwiththeothertwostrategiestoenhanceelasticstretchability,whichhasprofoundimplicationsforthedesign,fabrication,andapplicationsofstretchableelectronics.Theresearchresultsarepublishedintheacademicjournal“AdvancedMaterials”underthetitleof“AnOverstretchStrategytoDoubletheDesignedElasticStretchabilityofStretchableElectronics”(DOI:10.1002/adma.202300340).ThefirstauthorofthepaperisJuyaoLi,aPhDstudentattheInstituteofMechanics,ChineseAcademyofSciences,andthecorrespondingauthorisYewangSu,aresearcherattheInstituteofMechanics,ChineseAcademyofSciences,withtheparticipationofXiaoleiWu,aresearcherattheInstituteofMechanics,ChineseAcademyofSciences,inthework.ThisworkissupportedbytheNationalNaturalScienceFoundationofChina,the0to1OriginalInnovationProgramoftheChineseAcademyofSciences,CASInterdisciplinaryInnovationTeam,andtheWRQBTalentProgramoftheChineseMinistryofOrganization.  Figure1.Evolutionofstretchablestructuresoverthepastdecades. Figure2.Operationoftheoverstretchstrategy.Thecolumnontheleft(Column1)showsthestep-by-stepoperationoftheoverstretchstrategy:①-②stretchingtothedesignedelasticlimit(58.5%),②-③stretchingbeyondthedesignedelasticlimit(140%),③-④releasingtheappliedstrain,④-⑤stretchingtoenhancedelasticlimit(117%).Columns2and3providethecontoursofthefiniteelementanalysis(FEA)forthemaximumprincipalstrainandequivalentplasticstrainoftheMTSIcorrespondingtoeachstepinColumn1,respectively. Figure3.MechanicalanalysisoftheoverstretchstrategyviathefreestandingMTSI.aMechanicalconstitutiverelationshipoftheMTSI:idealelastoplasticity.bSchematicandmechanicalmodelofthefreestandingMTSI.cFirstrow:step-by-stepoverstretchstrategyoperationwithfreestandingMTSI(oneperiod).Secondrow:stressdistributioninthecross-sectionofthesemicirclevertexineachprocessifnoadditionalplasticityoccursfromregime③to④.Thirdrow:stressdistributioninthesemicirclevertexcross-sectionineachprocessifadditionalplasticityoccursfromregime③to④.dEnhancedelasticstretchabilityofthefreestandingMTSIasafunctionofthemaximumofthefirstappliedstrain/over-strain,includingtheresultsoftheexperiments,FEA,andtheory. Figure4.ExperimentalverificationoftheoverstretchstrategyviathefreestandingMTSI.aImagesoftheinitialstateofthefreestandingMTSIandthefrontandsideviewswhenstretchedby150%(fromtoptobottom).bStress–straincurvesofadog-bone-shapedcopperplateinuniaxialtension.c-kCurvesoftheforceversustheappliedstrainduringthefirstappliedstretch,unloading,andsecondappliedstretch;thefirstappliedstrainforc–kis30%,50%,60%,75%,90%,110%,120%,130%,and150%,respectively(i-kcontaintheFEAresults,dottedlines). Figure5.MechanicalanalysisoftheMTSIbondedonthesoftsubstrate.a/b/cEnhancedelasticstretchabilityofthickhorseshoe/zigzag/fractalinterconnectsbondedonthesoftsubstrateasafunctionofthemaximumofthefirstappliedstrain/over-strain.dCurveofthedesignedelasticstretchabilityofserpentineinterconnectionbondedonthesoftsubstrateasafunctionofitsthickness.e-gFEAresultsofserpentineinterconnectionswiththreetypicalthicknesses.Theuppersubgraphsarethecorrespondingwrinkling,buckling,andnon-bucklingdeformationduringstretching,andthelowersubgraphsshowtherelationshipbetweentheenhancedelasticstretchabilityofthestructureandthemaximumofthefirstappliedstrain/over-strain.hSchematicofthedeformationmodesofthepartialsemicircleforthethickandthininterconnects.   Originallink:AnOverstretchStrategytoDoubletheDesignedElasticStretchabilityofStretchableElectronics(wiley.com)

Reasearch Progress

View More